Week 4

hodcs@rknec.edu

Min-Max: DAC based Example

Min-Max: DAC Algorithm

Algorithm min_max(a,i,j,min,max)

```
{
```

If $(\mathrm{i}==\mathrm{j})$ then $\mathrm{min}=\mathrm{max}=\mathrm{a}[\mathrm{i}]$
Else
If $(\mathrm{i}=\mathrm{j}-1)$ then
\{
if(a[i] < a[j]) then
\{
$\min =a[i] ; \max =a[j]$
\}
else
\{
$\min =a[j] ; \max =a[i]$
\}
Else
mid $=[i+j] / 2$ (Take lower integer)
min_max(a,i,mid,min,max)
$\min _\max (a, \operatorname{mid}+1, j, \min 1, \max 1)$
if $(\max <\max 1)$ then $\max =\max 1$
if $(\min >\min 1)$ then $\min =\min 1$
\}
\}

- Complexity equation:
- $T(n)=T(n / 2)+T(n / 2)+2$ for $n>2$
- $T(n)=1$ if $n=2$
- $T(n)=0$ if $n=1$

Quick Sort Analysis

```
Algorithm QuickSort(a, start, end)
{
    If (start < end)
    {
        X = partition(a, start, end)
        Quicksort(a, start, x-1)
        Quicksort(a, x+1, end)
    }
}
Total time including partition = 2T(n/2) + an +b+c1 > 2T(n/2) + an
Which can be written as: 2T(n/2) + cn, where c = constant.
If there is only one element, then T(1) = c, because "if" loop will not be
executed.
```


Quick Sort Analysis

Algorithm partition(a, start, end)

```
{
    pivot = a[end]; 1 unit
    pindex = start; 1 unit
    for i= start to end-1 do
    {
        if (a[i] <= pivot)
        {
            swap(a[i], a[pindex])
            pindex++;
            }
    swap(a[pindex], pivot)
    return(pindex)
}
Total time = an+b
```


Mathematical solving

$T(n)=2 T(n / 2)+c n$
In the next recursion, the value of $n=n / 4$, i.e., n replaced by $n / 2$.
$T(n)=2\left[2\left[T\left(\frac{n}{4}\right)+c[n / 2]\right]\right]+c n$
$T(n)=4 T(n / 4)+2 c n$
$\mathrm{T}(\mathrm{n})=8 \mathrm{~T}(\mathrm{n} / 8)+3 \mathrm{cn}$
$T(n)=2^{k} T\left[\frac{n}{2^{k}}\right]+k c n$
$\frac{n}{2^{k}}=1$ hence $\mathrm{k}=\log \mathrm{n}$
$\mathrm{T}(\mathrm{n})=2^{\log n} * 1+\log n c n=\Rightarrow \log n$

Worst Case

- In worst case the given array is already sorted and it is required to sort it in reverse order. (ascending to descending).

1	2	3	4	5	6	7	8

- And in all steps, the resultant arrays will be un-balanced.
- In such case: the second Quicksort function will not be executed and time complexity will be controlled by only first quicksort function. This function will be executed for $\mathrm{T}(\mathrm{n}-1)$ times.
- $T(n)=T(n-1)+c n$
- $T(n)=T(n-2)+c(n-1)+c n=T(n-2)+2 c n-c$
- $T(n)=T(n-3)+c(n-1)+2 c n-c \rightarrow$
- $T(n-3)+c(n-2)+2 c n-c=T(n-3)+3 c n-3 c$
- $T(n-4)+4 c n-6 c$
- $T(n-k)+k c n-(k(k-1) / 2)$
- Smallest unit $=\mathrm{n}-\mathrm{k}=1$, hence $\mathrm{k}=\mathrm{n}$ ignoring the constants.
- $T(n)=T(1)+n c n-$ constant term $\Rightarrow n \times n=n^{2}$

Unit 4: Dynamic Programming

hodcs@rknec.edu

Characteristics

- Developed by Richard Bellman in 1950.
- To provide accurate solution with the help of series of decisions.
- Define a small part of problem and find out the optimal solution to small part.
- Enlarge the small part to next version and again find optimal solution.
- Continue till problem is solved.
- Find the complete solution by collecting the solution of optimal problems in bottom up manner.

Characteristics

- Types of problems and solution strategies.
- 1. Problem can be solved in stages.
- 2. Each problem has number of states
- 3. The decision at a stage updates the state at the stage into the state for next stage.
- 4. Given the current state, the optimal decision for the remaining stages is independent of decisions made in previous states.
- 5. There is recursive relationship between the value of decision at a stage and the value of optimum decisions at previous stages.

Characteristics

- How memory requirement is reduce:
- How recursion overheads are converted into advantage
- - By storing the results of previous $n-2$ computations in computation of $n-1$ stage and will be used for computation of " n " stage.
- Not very fast, but very accurate
- It belongs to smart recursion class, in which recursion results and decisions are used for next level computation. Hence not only results but decisions are also generated.
- Final collection of results: Bottom Up Approach.

Definition

I) MULTI-STAGE CRAPH:

Features:

1) It is a directed graph consist of Vertices and Edges
2) In this graph the vertices are partitioned into $k>=2$ disjoint sets. These sets are denoted as Vi, where $1<=i \ll k$
3) If there is an edge $\langle u$, $v\rangle$, then the vertex " " u " belongs to set " $V i$ " and vertex " v " belongs to set " V_{i+1} "
4) The number of vertices in the first and last set i.e., V_{1} and V_{k} are 1 , that is there will be only one source and one destination vertex.

Example of Multi-stage Graph

Backward Algorithm

Backward Algorithm:

Using this method, the shortest path from source to destination, is generated using backward movement. The starting stage of the graph is denoted as stage 2 , so that the backward movement can be implemented to stage 1.

The algorithm uses formula:

```
bcost (i,j) = min {bcost (i-1, I) +\operatorname{cost}(I,j)}
    | € Vi-1
    <l, j> € E
```

In this: "i" represent : STAGE "j" represents: VERTICES OF STAGE
i-1 represents: PREVIOUS STAGE "I" represenst: VERTICES OF PREVIOUS STAGE
The graph is represented using "cost" matrix of size " $n \times n$ ".

Algorithm

Algorithm: Backward Method

Assumptions:

1) The graph is represented using cost matrix of size [nxn].
2) Array $\mathrm{d}[1 . . \mathrm{n}]$ is a temporary array used to hold vertices information
3) Array $p[1 . . k]$ is a output array of size " k ", where " k " is number of stages in the graph.

Algorithm backward_cost $(G$, cost, $d, n: p)$
\}
Step 1:
$b \operatorname{cost}[1]=O / / A$ ssume vertex 1 as start vertex
Step 2:
For $j=2$ to $n d o$
\{
Function: Find vertex " r " such that $\langle r ; j\rangle$ is an edge in the graph and bcost[r] + cost $[r ; j]$ is minimum

$$
\begin{aligned}
& b \operatorname{cost}[j]=b \cos t[r]+\operatorname{cost}[r ; j] ; \\
& d[j]=r ;
\end{aligned}
$$

\} //End of For loop
Step 3: Finding minimum cost path

$$
p[1]=1 ; \quad p[k]=n
$$

$$
\text { For } j=k-1 \text { to } 2 \text { do }
$$

$$
p[j]=d[p[j+1]]
$$

\} //End of Algorithm

