Week 4

hodcs@rknec.edu



Min-Max

: DAC based Example

1 2 3 4 5 6 7 8 9 10
22 13 -5 -8 15 60 17 31 47 45
1 2 3 4 5 6 7 8 9 10
1 2 3 4 5 6 7 8 10
1 2 3 6 7 8
13 22 -5 17 60 31




Min-Max: DAC Algorithm

Algorithm min_max(a,i,j,min,max) {
{ mid = [i+j] / 2 (Take lower integer)
If (i==j) then min=max=ali] min_max(a,i,mid,min,max)
Else min_max(a,mid+1, j, minl, max1)
If(i=j-1) then if (max < max1) then max = max1
{ if (min > min1) then min =min 1
if(a[i] < a[j]) then }
{ }
min = a[i]; max=alj]
} * Complexity equation:
else * T(n)=T(n/2)+T(n/2)+2 forn>2
{ * T(n)=1ifn=2
min=al[j]; max=ali] * T(n)=0if n=1
}

Else



Quick Sort Analysis

Algorithm QuickSort(a, start, end)

{
If (start < end) C1
{
X = partition(a, start, end) Check partition time
Quicksort(a, start, x-1) T(n/2)
Quicksort(a, x+1, end) T(n/2)
}
}

Total time including partition = 2T(n/2) + an+ b + c1 = 2T(n/2) + an
Which can be written as:  2T(n/2) + cn, where ¢ = constant.

If there is only one element, then T(1) = ¢, because “if” loop will not be
executed.



Quick Sort Analysis

Algorithm partition(a, start, end)
{

pivot = a[end];
pindex = start;
for i = start to end-1 do
{
if (a[i] <= pivot)
{
swap(a[i], a[pindex])
pindex++;
}
swap(a[pindex], pivot)
return(pindex)

}

Total time = an+b
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Mathematical solving

T(n) = 2T(n/2 ) + cn
In the next recursion, the value of n = n/4, i.e., n replaced by n/2.

T(n) =2 [2 [T (g) + c[n/Z]” + cn
T(n) =4T(n/4) + 2 cn

T(n) = 8T(n/8) + 3cn

T(n)=2%T Ln—k] +kcn

2—k=1hencek=logn

T(n)=218" « 1 +logncn == nlogn



Worst Case

* In worst case the given array is already sorted and it is required to sort it in reverse order.
(ascending to descending).

* And in all steps, the resultant arrays will be un-balanced.

* In such case: the second Quicksort function will not be executed and time complexity will be
controlled by only first quicksort function. This function will be executed for T(n-1) times.

* T(n)=T(n-1) + cn

* T(n)=T(n-2) +c(n-1) + cn =T(n-2) + 2cn —c

* T(n)=T(n-3)+c(n-1)+2cn—c =>

* T(n-3) +c(n-2)+ 2cn—c=T(n-3) + 3cn—3c

* T(n-4) + 4cn —6¢C

* T(n-k) + ken — (k(k-1)/2)

* Smallest unit = n-k=1, hence k = n ignoring the constants.
* T(n) = T(1) + ncn — constant term = nxn = n?



Unit 4: Dynamic Programming
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Characteristics

* Developed by Richard Bellman in 1950.
 To provide accurate solution with the help of series of decisions.

* Define a small part of problem and find out the optimal solution to
small part.

* Enlarge the small part to next version and again find optimal
solution.

e Continue till problem is solved.

* Find the complete solution by collecting the solution of optimal
problems in bottom up manner.



Characteristics

e Types of problems and solution strategies.
* 1. Problem can be solved in stages.
2. Each problem has number of states

* 3. The decision at a stage updates the state at the stage into the
state for next stage.

* 4. Given the current state, the optimal decision for the remaining
stages is independent of decisions made in previous states.

5. There is recursive relationship between the value of decision at a
stage and the value of optimum decisions at previous stages.



Characteristics

* How memory requirement is reduce:
* How recursion overheads are converted into advantage
* - By storing the results of previous n-2 computations in computation

o

of n-1 stage and will be used for computation of “n” stage.
* Not very fast, but very accurate

* It belongs to smart recursion class, in which recursion results and
decisions are used for next level computation. Hence not only results
but decisions are also generated.

* Final collection of results: Bottom Up Approach.



Definition

[) MULTI-STAGE GRAPH:
Features:

1) Itisadirected graph consist of Vertices and Edges
2) In this graph the vertices are partitioned into k >= 2 disjoint sets. These sets are denoted as Vi,

where 1<=i<=k
3) Ifthere is an edge <u, v>, then the vertex “u” belongs to set “Vi" and vertex “v" belongs to set
Hvi+1H

4) The number of vertices in the first and last seti.e., V; and V, are 1, that is there will be only one
source and one destination vertex.



Example of Multi-stage Graph

5.2. MULTISTAGE GRAPHS
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Backward Algorithm

Backward Algorithm:

Using this method, the shortest path from source to destination, is generated using backward
movement. The starting stage of the graph is denoted as stage 2, so that the backward movement can
be implemented to stage 1.

The algorithm uses formula:

bcost (i,j) = min {bcost (i-1, 1) + cost(l,j) }
| € Vi-1
<|,j>€E
In this: “i” represent : STAGE “i” represents: VERTICES OF STAGE
i -1 represents: PREVIOUS STAGE “I” represenst: VERTICES OF PREVIOUS STAGE

The graph is represented using “cost” matrix of size “nxn”.



Algorithm

Algorithm: Backward Method
Assumptions:
1) The graph is represented using cost matrix of size [nxn].
2) Arrayd[1l..n]is a temporary array used to hold vertices information
3) Array p[l..k] is a output array of size “k"”, where “k” is number of stages in the graph.

Alcorithm backward cost(G. cost. d. n - p/

P
i

Step 1-
becostf1] = 0 /Assume vertex 1 as start vertex
Step 2.
Forj=2rtondo
{
Function' Find vertex 17 such that <rj> is an edge in the graph and bcost{r/ +
coS r,.f:!',t il is minimum
beost/i] = becost{r] + cost{r. i/’
dlif =1~
} //End of For loop
Step 3 Finding minimum cost path
pll]=1- plk] =n
Forj=k-1to 2 do
pll =dplh+1]]-
L A End of Aleorithm



