
Week 4
hodcs@rknec.edu



Min-Max: DAC based Example
1 2 3 4 5 6 7 8 9 10

22 13 -5 -8 15 60 17 31 47 45

1 2 3 4 5 6 7 8 9 10

6 7 81 2 3 4 5 9 10

1 2

13 22

6 7

17 60

3

-5

8

31



Min-Max: DAC Algorithm
Algorithm min_max(a,i,j,min,max)

{

If (i==j) then min=max=a[i]

Else

If(i=j-1) then

{

if(a[i] < a[j]) then

{

min = a[i]; max=a[j]

}

else

{

min=a[j]; max=a[i]

}

Else

{

mid = [i+j] / 2 (Take lower integer)

min_max(a,i,mid,min,max)

min_max(a,mid+1, j, min1, max1)

if (max < max1) then max = max1

if (min > min1) then min = min 1

}

}

• Complexity equation: 

• T(n) = T(n/2) + T(n/2) + 2 for n > 2

• T(n) = 1 if n=2

• T(n) = 0 if n=1



Quick Sort Analysis

Algorithm QuickSort(a, start, end)

{
If (start < end) C1
{

X = partition(a, start, end) Check partition time
Quicksort(a, start, x-1) T(n/2)
Quicksort(a, x+1, end) T(n/2)

}
}
Total time including partition = 2T(n/2) + an + b + c1 � 2T(n/2) + an
Which can be written as: 2T(n/2) + cn, where c = constant.
If there is only one element, then T(1) = c, because “if” loop will not be 
executed.



Quick Sort Analysis

Algorithm partition(a, start, end)

{
pivot = a[end]; 1 unit
pindex = start; 1 unit
for i = start to end-1 do
{

if (a[i] <= pivot)
{

swap(a[i], a[pindex]) “a” time unit for “n” times
pindex++;

}
swap(a[pindex], pivot) 1 unit
return(pindex) 1 unit

}
Total time = an+b



Mathematical solving
T(n) = 2T(n/2 ) + cn

In the next recursion, the value of n = n/4, i.e., n replaced by n/2.

T(n) = 2 2 �
�

�
+ � �/2 + ��

T(n) = 4T(n/4) + 2 cn

T(n) = 8T(n/8) + 3cn

T(n) = 2	 �
�

��
+ 
 ��

�

��
= 1 hence k = log n

T(n) = 2��� �  ∗  1 + ���� � � =⇒ � log �



Worst Case
• In worst case the given array is already sorted and it is required to sort it in reverse order. 

(ascending to descending).

• Next time the array will be partitioned into two un-balanced partitioned.

• And in all steps, the resultant arrays will be un-balanced.

• In such case: the second Quicksort function will not be executed and time complexity will be 
controlled by only first quicksort function. This function will be executed for T(n-1) times.

• T(n) = T(n-1) + cn

• T(n) = T(n-2) + c(n-1) + cn = T(n-2) + 2cn – c

• T(n) = T(n-3) + c(n-1) + 2cn – c �

• T(n-3) + c(n-2) + 2cn – c = T(n-3) + 3cn – 3c

• T(n-4) + 4cn – 6c

• T(n-k) + kcn – (k(k-1)/2)

• Smallest unit = n-k= 1, hence k = n ignoring the constants.

• T(n) = T(1) + ncn – constant term ���� nxn = n2

1 2 3 4 5 6 7 8



Unit 4: Dynamic ProgrammingUnit 4: Dynamic ProgrammingUnit 4: Dynamic ProgrammingUnit 4: Dynamic Programming
hodcs@rknec.edu



CharacteristicsCharacteristicsCharacteristicsCharacteristics

• Developed by Richard Bellman in 1950.

• To provide accurate solution with the help of series of decisions. 

• Define a small part of problem and find out the optimal solution to 
small part.

• Enlarge the small part to next version and again find optimal 
solution.

• Continue till problem is solved.

• Find the complete solution by collecting the solution of optimal 
problems in bottom up manner.



CharacteristicsCharacteristicsCharacteristicsCharacteristics

• Types of problems and solution strategies.

• 1. Problem can be solved in stages.

• 2. Each problem has number of states

• 3. The decision at a stage updates the state at the stage into the 
state for next stage.

• 4. Given the current state, the optimal decision for the remaining 
stages is independent of decisions made in previous states.

• 5. There is recursive relationship between the value of decision at a 
stage and the value of optimum decisions at previous stages.



Characteristics

• How memory requirement is reduce:

• How recursion overheads are converted into advantage

• - By storing the results of previous n-2 computations in computation 
of n-1 stage and will be used for computation of “n” stage.

• Not very fast, but very accurate

• It belongs to smart recursion class, in which recursion results and 
decisions are used for next level computation. Hence not only results 
but decisions are also generated.

• Final collection of results: Bottom Up Approach.



Definition



Example of MultiExample of MultiExample of MultiExample of Multi----stage Graphstage Graphstage Graphstage Graph



Backward Algorithm



Algorithm


